Effects of the Stirred Tank's Design on Power Consumption and Mixing Time in Liquid Phase

Author(s):  
I. Houcine ◽  
E. Plasari ◽  
R. David
2015 ◽  
Vol 41 (5) ◽  
pp. 276-280 ◽  
Author(s):  
Yoshihito Kato ◽  
Shota Ohtani ◽  
Haruki Furukawa

2005 ◽  
Vol 70 (12) ◽  
pp. 1533-1544 ◽  
Author(s):  
Ivica Stamenkovic ◽  
Olivera Stamenkovic ◽  
Ivana Bankovic-Ilic ◽  
Miodrag Lazic ◽  
Vlada Veljkovic ◽  
...  

Gas holdup was investigated in a gas-liquid and gas-liquid-solid reciprocating plate column (RPC) under various operation conditions. Aqueous carboxymethyl cellulose (sodium salt, CMC) solutions were used as the liquid phase, the solid phase was spheres placed into interplate spaces, and the gas phase was air. The gas holdup in the RPC was influenced by: the vibration intensity, i.e., the power consumption, the superficial gas velocity, the solids content and the rheological properties of the liquid phase. The gas holdup increased with increasing vibration intensity and superficial gas velocity in both the two- and three-phase system. With increasing concentration of the CMC PP 50 solution (Newtonian fluid), the gas holdup decreased, because the coalescence of the bubbles was favored by the higher liquid viscosity. In the case of the CMC PP 200 solutions (non-Newtonian liquids), the gas holdup depends on the combined influence of the rheological properties of the liquid phase, the vibration intensity and the superficial gas velocity. The gas holdup in the three-phase systems was greater than that in the two-phase ones under the same operating conditions. Increasing the solids content has little influence on the gas holdup. The gas holdup was correlated with the power consumption (either the time-averaged or total power consumption) and the superficial gas velocity.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Fuyang Tian ◽  
Yuhua Chen ◽  
Zhanhua Song ◽  
Yinfa Yan ◽  
Li Fade ◽  
...  

Simulation analysis and parameter optimization are performed for the loading and mixing devices of a self-propelled total mixed ration mixer. To reveal the three-dimensional movement of silage material under the action of the loading cutter roller, the latter is modeled using SolidWorks software. ANSYS/LS-DYNA software is used to simulate the process of silage cutting, which is modeled using smoothed particle hydrodynamics coupled with the finite element method. The cutting force and power consumption are simulated, and the behavior of the equivalent strain of the silage is determined. The results showed that silage was broken up mainly by extrusion and shear force due to the loading cutter roller. The power consumption according to the simulation is consistent with the value from an empirical formula, confirming the validity of the proposed modeling method. To study the mixing performance and obtain the optimum parameters of the mixing device, the Hertz–Mindlin model is used for the interaction between material particles and mixing device. A three-factor, five-level method is used to optimize the mixing performance. Material-mixing time, loading rate, and auger speed are chosen as experimental factors and mixed uniformity as an evaluation index. It is found that auger speed and material mixing time have significant effects on mixing uniformity. These results provide reference values allowing the analysis of the crushing of silage and selection of the optimum parameters for mixing performance.


2012 ◽  
Vol 198-199 ◽  
pp. 371-378 ◽  
Author(s):  
C. André ◽  
J.F. Demeyre ◽  
C. Gatumel ◽  
H. Berthiaux ◽  
G. Delaplace

Sign in / Sign up

Export Citation Format

Share Document